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1. Introduction 

In some previous papers [5, 7, 9, 10] we have dealt with optimal control problems 
for second order ordinary differential equations. Thereby our intention was to 
work and formulate the results within the framework of the given state equation 
and not to reformulate the original control problem into a control problem for a 
system of two first order differential equations. The latter may be (formally) 
possible in case of quasilinear state equation, however is in principle impossible 
for non-quasilinear equation, where the defining functions are not smooth 
enough. For such a state equation we have considered an unconstrained control 
problem in [10]. Here, for the same state equation we are going to investigate a 
constrained control problem, which will be briefly denoted by (P) and which 
reads as follows. 
Find 

inf $-0(u, y) 
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subject to 

u E Uad = {U E L~n(0, 1): u(x) ~ Q a.e. x ~ (0, 1)}, (1) 

d 
dx a(x, y(x), y'(x)) + b(x, u(x), y(x), y'(x)) = O, 

y ( 0 ) = 0 ,  y ( 1 ) = 0 ,  

x E (0, 1) ,  (2) 

9-~(u,y)<~O, v = - m  o . . . . .  - 1 ,  f f ~ ( u , y ) = 0 ,  v = l , . . . , n 0 ,  (3) 

where L~(0,  1) stands for the m-fold Cartesian product of L=(0, 1) and Q c R m , 
m I> 1, is a given set called control set, containing at least two elements. The 
functionals ~-,, v = - m 0 , . . . ,  no,  are given by 

f0 
1 

fir(u, y) = g~(x, u(x), y(x), y(x), y'(x)) dx . (4) 

The given real-valued functions a = a(x, s, t), b = b(x, r, s, t) and gv = g,(x, r, s, t) 
are defined for x E (0, 1), r E Q, s, t E R and satisfy certain assumptions to. be 
specified below. 

The characteristic feature of this control problem (P) is that the function a in the 
state equation (2) does not depend on the control u E Uaa. Just because of this we 
are able to derive a necessary optimality condition in the form of a Pontryagin 
minimum principle (Theorem 1), from which we get a linearized (weak) 
Pontryagin minimum principle (Theorem 2) supposed the control set Q c R m is 
convex. To prove these results we use McShane-variations u~c (e > 0, c E R~) of 
the optimal control u0, study carefully use, the assigned state Ysc = y(u,~) and the 
behaviour of ff~(U~c, y~)  dependent on the parameters e > 0  and c ~ R t + .  
Thereby an important role is played by a generalized Green formula giving the 
solution to a linear boundary value problem for a second order ordinary 
differential equation whose coefficients are only measurable (of. [6]). Further- 
more we use some separation theorems for sets of convex cones in R n , which can 
be found, e.g., in [12] or [3, 2]. 

There are not very much papers related to the above control problem (P); 
a list of them is given in our talk [8]; article [1] presents a survey of papers pub- 
lished on time optimal control problems for second order ordinary differential 
equations. 

The present paper is written in the spirit of our article [10] and the last 
paragraphs of the monograph [13]. The contents of the sections is completely 
described by their headlines. 

2. Notations and Assumptions 

Nearly all of the notations used throughout the paper are more or less standard. 
So we denote by R n, n/> 1, the n-dimensional Euclidean space with the norm 
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[1" H. R~ is the set of all n-dimensional nonnegative vectors. All vectors are to be 
unders tood as column vectors. We denote by I1"11 ~ t h e  norm in C[0, 1] and by I1"tl 
the norm in LP(O, 1), 1 ~<p ~< oo. H i (0 ,  1) denotes the Sobolev space and H~(0, 1) 
its subspace, whose elements vanish at the ends of the interval (0, 1). In H~(0, 1) 
the norm is given by Ilyllo = Ily'llz. Let us recall that H~(0, 1) is continuously 
embedded  into C[0, 1] and that the two elementary inequalities 

l y ( x ) l ~ l l y l l o  V x ~ [ 0 , 1 ]  and IlYll2~llYll0 (5) 

hold for all y E H01(0, 1). Furthermore,  f E C A R  denotes a function f :  (0, 1) x 
R x ~---> R satisfying the Carath6odory conditions and K a generic positive 
constant. 

Concerning the given real-valued functions a = a(x, s, t), b = b(x, r, s, t) and 
g ~ = g ~ ( x , r , s , t ) , v = - m o , . . . , n o ,  defined for x E ( 0 , 1 ) ,  r E Q ,  s, t E R  and 
their partial derivatives with respect to s and t we formulate now the assumptions 
A1-A3;  two further assumptions A4 and A5 will be given afterwards. 

AI:  It holds 

a, a~, a t E C A R ,  

b(' ,  u( ') ,  ",-), bs(', u( ') ,  ", "), bt(', u('), ", ") ~ C A R  

g~(" , u(" ), ", "), g~( ' ,  u(" ), ", "), g,t(', u(" ), ", ") E C A R  

VU E Uad , 

Vu ~ Uad �9 

a<-a t ( x , s , t  ) for a.e. x E ( O ,  1) ,  Vs, t E R ,  

and 

la(x,s,t)l~Al+ltl) for a.e. x E ( O ,  1) ,  V s E R  with I s l ~ A ,  

V t ~ R .  

A2b: There is a positive constant a and for each h > 0 a positive constant ~ a  
such that 

las (x , s , t ) l ,a t (x , s , t )<- l~  ~ for a . e . x ~ ( O ,  1) ,  

Vs, t E R with Isl+ltl~x. 

A2c: There are two positive constants/~ and 6 such that 

las(x,  s ,  t )  - a , (x ,  ~r, z)l ~< ~(Is  - o'1 + It - ~'1), 

la,(x, s, t) - a,(x, tr, ~-)] ~</z(ls - o" I + [t - ~'l), 

for a.e. x E ( O ,  1) ,  Vs, t, t r ,~ 'ER with I s - ~ l ,  l t - ~ l ~ < 8 .  

A3a: For  each A > 0 there is a positive constant ~ such that 

A2a: For each A > 0 there is a positive constant/h~ such that 



370 MANFRED GOEBEL AND ULDIS RAITUMS 

Ib(x, r, s, t)l, Ig.(x, r, s, t)l ~< ~x(1  + Itl 2) 
for a.e. x e (O ,  1), V { r , s } E Q •  with Irl+lsl~<x, V t E R .  

A3b: For each ) t > 0  there are two functions h1,~Ll(O,  1) and h2, EL2(0 ,  1) 
such that 

[b,(x, r, s, t)l, Ig,,(x, r, s, t)l <- hla (x) , 

Ibt(x, r, s, t)l, [g.,(x, r, s, t)l ~< h2x(x) 

for a.e. xE(O,  1), V { r , s , t } ~ Q •  with Irl+lsl+ltl~x. 

A3c: For each )t > 0 there are two positive constants ~4x and 8 x such that 

Ib.(x, r, s, t) - b.(x,  r, cr, ~')l ~< ma(Is - o'l + It - ~'D, 

Ib,(x, r,  s ,  t )  - b , (x ,  r ,  ~,  ~)1 ~< m~(Is - ~1 + It - ~'l), 

I g ~ . ( x , r , s , t ) - g ~ . ( x , r , ~ r , ~ ) l ~ m A I s  -~r l  + I t - ~ D ,  

Igor(x, r, s, t) - g~,(x, r, tr, ~-)! ~</~4x([ s - trl + ! t - r l ) ,  

for a.e. xE(O,  1), V r ~ Q  

with [rl ~< 4, Vs, t, o', ~" E R with [s - tr[, It - r I ~< 6x" 

From these assumptions it follows that 

a(., y(.), y'(.))EL2(O, 1) Vy EH~(0 ,  1) ,  

b(', u( ') ,  y( ' ) ,  y ' ( ' ) ) ,  g~(', u(-), y( ') ,  y ' ( ' ))  ELI(O,  1)  Vu ~ U~d, 

Vy E Hi(0 ,  1).  

It means that all functionals ~-~ are well defined for U~d x H~(0, t )  and it makes 
sense to define the solution to the state equation (2) in the sense of Sobolev. So 
for any fixed u E U.a a function y ~ H~(0, 1) is said to be a (weak) solution to the 
boundary value problem (2) if and only if 

fo [a(x, y(x), y'(x))z'(x) + b(x, u(x), y(x), y'(x))z(x)] dx 0 

Vz ~ H0~(0, 1) .  (6) 

Using a generalized DuBois -Reymond Lemma (cf. [4]) it is easily proved that for 
fixed u E U~a a function y E H0X(0, 1) is a solution in this sense if and only if there 
is a constant k(u)E ~ with 

L a(x, y(x), y'(x)) = b(~, u(~), Y(l~), Y'(~)) dl~ + k(u) Vx E [0, 11. (7) 

In the whole paper a solution to any linear or nonlinear two point boundary value 
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problem is to be understood in the above sense with the respective integral 
identity. 

Now we are able to give the last two assumptions A4 and A5, which concern the 
state equation (2). 

A4: For each u E U,, a the state equation (2) has a unique solution y(u) E H0(0, 1) 
and there is a constant K > 0 with 

Ily(u)llo ~ K  V u E U ~ .  

AS: For each A > 0 there is a positive constant vx such that 

f~  {at(x , y, y ' ) z  '2 + [as(x, y, y ' )  + bt(x , u, y, y ')]zz '  

+ bs(x, u, y, y ' ) z  2} dx>~ ~llz l lo  ~ 

V z E H I ( 0 , 1 )  with z ( 0 ) = 0  or 

V{u, y} E Uad X HA(0 , 1) forwhich 

II lul II + Ily'llo ~<A �9 

z(1) = 0 and 

y'  e L~(O, 1), 

We finish this section with some further notations. By {u0, Y0} ELm(0, 1)•  
Ho~(0, 1) we denote any optimal pair to the control problem (P). For any function 
an upper index 0 indicates that this function is defined by means of such an 
optimal pair. For example, we use the abbreviations 

a~ = a(x, Yo(X), yo(X)), . . o ' . ,  gv(x)  = g~(x, Uo(X), Yo(X), yo(X)) 

but also 

a~ a,(x,  Yo(X), Yo(X)) . . . . .  Yo(X), y'o(X)) = ' g~ = gv,(x, Uo(X), , 

where x E (0, 1). 

3. Optimality Conditions 

In this section we formulate the Pontryagin minimum principle for the constrained 
control problem (P), from which we derive the linearized (weak) Pontryagin 
minimum principle within a few steps. The proof of Theorem 1 is the task of the 
next two sections. 

THEOREM 1 (Pontryagin Minimum Principle). I f  under the assumptions A1-A5 
the pair ( Uo, Yo} E Lm(0, 1) • Hi(0,  1)/s an optimal solution to problem (P), then 
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there are m o + n 0 + l  numbers A ~ R ,  with E "~ I / ~ v l > 0  and a_mo>- 
0 , . . . ,  a 0 I> 0, such that 

no 

A~[b(x, u, Yo(X), y'o(X))Z~(X) + g~(x, u, Yo(X), Y0(X))]/> 
v = - - m  0 

n o 

A~[b(x, Uo(X), yo(X), yo(xl)z~(x) + g~(x, Uo(X), yo(X), Y0(X))] 
v = - - m  0 

V u E Q ,  for a . e . x ~ ( 0 , 1 ) ,  

(8) 

where z~ E Hol(0, 1), v = - t o o , . . . ,  no, denotes the unique solution to 

d o o o ] 
- -~- [a t (x)z'(x) + b t (x)z(x)] + [a s (x)z'(x) + b~ = 

d o o 
gut(x)-g~s(x),  xE(O,  1), with z(0) = 0 ,  z(1) = 0 .  

(9) 

As we have said before in the linear differential equation (9) the coefficient 
0 0 t 

a,, b, . . . .  stands for the composed function at(x, yo(X), Uo(X)), bt(x, Uo(X), yo(X), 
yo(X)) . . . .  , respectively. The right hand side of (9) is defined by the integrand g~ 
of the functional ~-,. By definition, z ~ H01(0, 1) is a solution to (9) provided 

f •  {[a~ + b~ + [a~ + b~ dx = /  

l - 1 [g~ + g~ Vy E I-I'o(O, 1). 

(10) 

Introducing the function 

no 

~0(x)= ~ a~z~(x), x E ( 0 , 1 ) ,  
v =  - m  0 

which is the unique solution to (9) with the right hand side 

n o  

g(X,x)= E 
v = - - m  0 

d o 

the minimum condition (8) can be written in the possibly more familiar form 

n o 

b(x, u, Yo(X), Yo(X))s + ~_~ A~g~(x, u, Yo(X), y'o(X)) 
v = - - m  0 

n o  

b(x, Uo(X), yo(X), Yo(X))~o(X ) + ~ A~g~(x, Uo(X), yo(X), yo(X)) 

V u E Q ,  a .e .x~(O,  1). 
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To derive the linearized Pontryagin minimum principle we formulate two 
additional assumptions. 

A6: The control set Q c R" is convex. 
A7: For a.e. x E (0, 1) and for all s, t E ~ the gradients V,b(x,.,  s, t), V,g~(x,., s, t) 
are continuous on Q. 

T H E O R E M  2 (Linearized Pontryagin Minimum Principle). I f  under the assump- 
tions A1-A7 the pair {u 0, Yo} ~ L~(0, 1)•  Hi(0 ,  1) /s an optimal solution to 

n o problem (P), then there are m o + n o + 1 numbers A~ ~ •, with E~=_mo IA~I > 0 
and A_mo I> 0 , . . . ,  A o/> 0, such that 

nO 

)t~(V,b(x, u0(x), yo(X), Yo(X))Z~(X) + V,g~('' "), u - Uo(X)) >- 0 
V ~ - - m  0 

V u E Q ,  for a.e. xE(O,  1),  (11) 

where z~ E Hlo(O, 1) /s defined as in Theorem 1. 

The proof of Theorem 2 is very simple. In condition (8) we replace u by the 
convex linear combination Uo(X ) + z(u - Uo(X)), where u E Q, z E [0, 1] and x 
(0, 1), and put all the terms on one side of the inequality. Afterwards we divide 
the whole expression by z and then let z tend to zero. This procedure yields the 
desired condition (11). 

Theorem 1 generalizes the results of [10], where we have considered an 
unconstrained control problem for the state equation (2). Under different 
assumptions and using completely different methods we have proved Theorem 2 
for a quasilinear state equation (in which the leading coefficient may also depend 
on the control parameter) already in [5]. 

4. Preliminaries 

We start the preliminaries with a regularity statement for the solution y(u)E 
H0~(0, 1) to the state equation (2). Namely, it holds 

y(u)' ~ L=(O, 1) Vu E U~d, (12) 

which is an immediate consequence of our assumptions; the proof is given in [10]. 
We assume now that {u 0, Y0} ~L~,(0, 1 )x  H01(0, 1) is optimal to the con- 

strained control problem (P). As we said already we want to prove Theorem 1 by 
means of McShane-variations of the optimal control u 0 . To do so, we begin with 
introducing the two sets 
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and 

= { w ~ l ( m + 2 ) :  W ~-- { U l , . . .  , Ul, X 1 . . . .  ,Xl,  C I , .  �9 �9 , C l }  , 

where l E N ,  u l ,  . . . , u t E Q,  x l ,  . . , , x t ~ to, c = { C l , . . .  , Cl} ~ ~L ) , 

Zs { W E ~ : X ~  ~ X j f o r i  ~ j , i ,  j =  l ,  . . . , l } .  

Here N is the set of all natural numbers and to the set of all Lebesgue points 
x ~ (0, 1) of the functions 

b~,(x) = [b(x,  u i, Yo(X), y ! ( x ) )  - b~ ,} 
g,,i(x) = g~,(x, u i, yo(X),  Yo(X)) - g ~  

(13) 

1 v = - m o , . . . ,  n o, i = 1 , . . . ,  l; z~ ~ Ho(0, 1) denotes the unique solution to (9) 
(cf. (10) and A5). Clearly, measto = 1. The restriction to such Lebesgue points 
will be essential in the proof of the very important Lemma 9. 

Let  w ~ ~a be fixed. For arbitrary e E (0, Co), e 0 > 0, we define 

E7 r  i + e c i ) ,  i = l , . . . , l ,  

and take e o so small that 

e~c = UI=,  E? C (0, 1) 1 - 1  e c  ec  
and Ui=l (Ei fq E i + I )  = Ve (0, %). 

(14) 

Then,  evidently, the function u,~ defined by 

{ui e (0, %) (15) i fx E 

u~r = Uo(X ) i fx E (0, 1)'xE, c '  

is an admissible control function called McShane-variation of u 0 . By y ~  = y ( u ~ )  

we denote the assigned solution to state equation (2) (see A4). In the following 
we have to study the behaviour of the pair {u,~, y~} ~ L~,(0, 1) x HA(0 , 1) and of 
ff~(u~c, y,r if one of the defining parameters e E (0, Co) or c E R / is changing. 
Clearly, u,~ = Uo if c = 0 ERt+. 

L E M M A  1. For  any  b o u n d e d  set  ~ E Rt+ there exist  two  pos i t ive  constants  e o a n d  

K such  that 

]y~c(x)l + [y'c(x)[ <<-K f o r  a.e.  x E (0, 1) ,  Ve ~ (0, Co), Vc E cg. 

Proo f .  First we take e 0 > 0 so small that (14) is satisfied for any c E qg. Because 
of (5) and A4, we have 

Ily,cllc  lly,cllo <r Ve (O, eo), (16) 
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Thus, we may take a constant a > 0 (not depending on e and c) such that 

lu,~(x)l + [y,~(x)l ~< x for a.e. x E (0, 1),  Ve �9 (0, e0), Vc E cg. 

(17) 

In virtue of the Lagrange formula and equation (7) we find 

f2 y'~(x) at(x, y~r Oy'~(x)) dO = a(x, y ~ ( x ) ,  y;c(x)) - a(x, y,~(x) ,0) 

= b(~, u~c(~), y,~(~), y'~(~)) d~ + ~(u,~) -a(x ,  y,c(x), 0). 

Applying assumptions Ac~a, , ~ b  and A3a, with ~ as defined in (17), we obtain 

(fo ly;r ~< a - '  Ib(g, u~(~), y~c(ff), y'~(~))l dff + Ik(u.~)l 

+ [a(x, y~c(x), 0)1) 

~< ~-1[m~(1 + IlY,JIo ~) + Ik(u,r + ~ ]  for a . e .  x ~ (0, 1), 
Vc E cr (18) 

Again using (7), A2a and A3a we see that 

Ik(u.~)l ~< la(x, y..(x), y.c(x))l dx Ib(x, u.(x), y.c(X), y'.(x))l dx 

~</h,~( l+ l l y , , l l o )+m, ( l+  I lY.l lb Vce~'.  

This estimation, together with (16) and (18), yields the desired estimation. �9 

Since the next lemma can be proved by straightforward calculations, its proof is 
omitted. 

LEMMA 2. For each bounded  set ~ ~ Rt+ there are two positive constants e o and 
K such that 

1 

~ e r ~ , l c , - d i l  Ve~(0 ,  eo) Vc, d ~  Ilu,c- u,dll2 , 
i = 1  

Mainly using assumption A5 it is not hard to get a similar estimation for 
IlY~c-Y,dll0 (see below). But since for [y~c(.)-y'd(')l  a pointwise estimation is 
required we need much more efforts. 

Let ~ C Rl+ be bounded and e 0 > 0 so small that (14) holds for each c E qg. For 
arbitrary e E (0, e0) and c, d E ~ we define some auxiliary functions by setting 
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y(O )(x) = yea(x) + O(ye~(x ) -yea(x)),  0 E [0, 1],  (19) 

al(e , c, d)(x) = fo 1 a,(x, y(O )(x), y(O )'(x)) dO, 

a2(e, c, d)(x) = fo I a.(x, y(O )(x), y(O )'(x)) dO, 

b,(e, c, d)(x) = f[  bt(x, ue~(x), y(O )(x), y(O )'(x)) dO, 

b2(e, c, d)(x) = fo I b.(x, uec(x ), y(O )(x), y(O )'(x)) dO, 

g,a(e, c, d)(x) = ~ g,.,(x, ue~(x), y(O )(x), y(O )'(x)) dO, 

g.2(e, c, d)(x) = f~ g..(x, ue~(x), y(O )(x), y(O )'(x)) dO, 

(20) 

and 

Ab(e, c, d)(x) = b(x, uec(x), yea(x), y'ea(x)) - b(x, ued(x), yea(x), y'a(x)), 1. 
Ag,.(e, c, d)(x) = g,,(x, u~e(x ), yea(x), y'~d(X)) -- g,.(X, Uea(X ), yea(X), yea(X))," J 

(21) 

where x E (0, 1) and v = - too  . . . .  , n 0. For arbitrary e ~ (0, e0) and c, d E qg 
these functions have the following properties: 

al(e, c, d), a2(e, c, d) E L| 1) with / 
a<~al(e,c,d)(x)<~K, la2(e ,c ,d)(x) l~K,  for a.e .x~(O,  1),~ (22) 

bl(e, c, d), g,,l(e, c, d) 

~ L 2 ( 0 ,  1) with Ilbl(e,c,d)ll2, IIg~(e,c,d)ll2<-K, (23) 

b2(e, c, d), g,,2(e, c, d) 

E L~(0, 1) with lib,(., c, d)lll, IIg=2(~, c, d)ll~ ~ K ,  (24) 

ab(~, c, d), a g h .  c, d) 
l 

~L1(0,1) with IlAb(~,c,d)lll, llagh, c,d)ll .<~g ~ Ic,-d,I . 
i = 1  

(25) 

Here  K denotes a positive constant neither depending on e ~ (0, eo) nor on 
c, d E ~. (22)-(25)  are more or less simple consequences of A1, (14), Lemma 1 
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and the growth conditions in A2b and A3b. As an example let us prove in detail 
only the estimation for Ilab(e, c, d)lll in (25). By definition of u,c and u~a, it 
holds 

u~(x) = u~a(x ) = Uo(X ) if x E (0, 1)\(E ~ U E ~a) 

and therefore 

f 
l lAb(e, c, d)l dx. IIAb(e, c, d)lll = Je,~oe,~ IAb(e' c, d)l dx = ,=1 Jerkier ~ 

Because of 

u~r = u,a(x ) = ui(x ) if x E e 7  n e7 d i = 1, l 

it remains 

'L 
IIAb(e, c, d)ll,  = Z lAb(e, c, d)l dx 

i = 1  i 

with 

E, = (E7  u E;~)\(E "c n E "~) 

= I ~  x i + e c i ' x ' + e d i ]  if c i < d i i f  c i = d , ,  

[.[xl + edi, xi + eci] if ci > d i 
i = 1 , . . .  , l .  

In virtue of Lemma 1 we can choose a A > 0, such that 

lu0(x)l + ly,d(x)l + ly,d(x)l-~A and lu, I + ly,~(x)l + ly'~(x)l ~ 

hold for a.e. x E ( 0 ,  1), all e E ( 0 ,  eo), d E  ~ and any i =  1 , . . . , l .  Then, by 
assumption A3a, it follows 

, 2 lAb(e, c, d)l dx ~ 2 ~  (1 + lY~c(x)l ) dx 
i i 

~ 2u~,e (1 + x2)lc,-  d,I, i = 1 , . . . ,  l ,  

that means, the desired estimation in (25) holds with K = 2 ~ ( 1  + h2). 
Using the auxiliary functions defined in (20), (21) we formulate the parametric 

linear boundary value problem 

d 
dx [al(e' c, d)(x)p'(x) + a2(e , c, d)(x)p(x)] 

+ [b,(e, c, d)(x)p'(x) + b2(e , c, d)(x)p(x)] = 
-Ab(e,c,d)(x), xE(O,  1),  with p(O)=O,  p 0 )  = 0 , 1  

(26) 
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for which p E HI(0,  1) is said to be a solution if 

fo {[a1(e, c, d)p'  + a2(e, c, d)p]z' + [b,(e, c, d)p'  

f: + b2(e, c, d )p]z }  dr. = - ab(e,  c, d ) z  dx Vz e H~(O, 1 ) . }  

(27) 

Again taking into account Lemma 1 we find a A > 0, such that for z = z(O) defined 
in (19) it holds 

lll..lll~o+lly(o)'lloo~,x vo~[o,1] Vc, d e ~ .  

Therefore, in assumption A5 we can replace u by u,r and y by y(O), 0 E [0, 1], 
respectively. If we do so and if we integrate the resulting inequality with 
respect to 0 ~ [0, 1], we see that the boundary value problem (26) is co- 
ercive on H0~(0, 1), where the coerciveness constant does not depend on the 
parameters e E(0 ,  %) and c, d E  cr (but of course on qg C R/ ) .  This means, 
due to the generalized Lax-Milgram-Theorem for all these parameters the 
boundary value problem (26) has a unique solution p(e, c, d)EHlo(O, 1). We 
claim 

p ( e , c , d ) = y , c - y , a  VeE(O, e o ) V c ,  d ~ .  (28) 

Indeed, by the respective definitions of Y~c and Y~a, for any z ~ HI(0,  1) we have 

i 

f ~  I ! t 0 = [a(x, Y~c, Y~c) - a(x, Y~d, Y,a)] z dx 

f: + [b(x, u~o, y.~, Y'c) - b(x, u~,  y.~, y'~)lz ax 

+ [b(x. Use, Y~d, Y'e) - b(x, u.e, y~e, Y'd)]z d x .  

Applying Lagrange formula to the first two terms and using the functions 
ax(e, c, d ) , . . . ,  b2(e, c, d) and A(e, c, d) defined in (20) and (21), respectively, 
we derive 

0 = [al(e, c, d)(y'~ - Y'a) + a2(e, c, d ) ( y ~ ,  y~a)]z' dx 

+ [b~(e, c, d)(y'~ -Y'd)  + b2(e, c, d)(y.~ - y~d)]z dx 

i 1 + ab(~ ,  c, a ) z  dx Vz ~ H~.(O. 1) ,  
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which already proves (28). 
Due to the uniform coercivity of the boundary value problem (26) and because 

of (25) we easily see that there is a positive constant K, such that 

l 

[ly~r Ve~(0, e0), Vce~r 
i = 1  

from which, noting (5), we obtain 

l 

]y,~(x) - y~d(X)] <~ eK ~ ]c, - dZ for a.e. x E (0, 1),  
i = 1  

Ve E (0, e0), Vc ~ c~. (29) 

Unfortunately, we cannot argue in the same way to get an analogous 
estimation for ]y'Xx)-y'd(x)[. However, we may use the results in [6], which 
allows to represent the solution to (26) and its derivative by means of a 
generalized parametric Green function G(e, c, d) = G(e, c, d)(x, E ), having the 
properties 

G(e, c, d), G(e, c, d)x E L~((O, 1) x (0, 1)) with 

IG(e, c, d)(x, E)I, IG(e, c, d)x(x, E)I ~ K for a.e. x, E ~ (0, 1), 

Ve ~ (0, Co), V c e ~ r  

in the form 

f0 
1 

p(e, c.d)(x) = - a(e ,  c, d)(x, E) hb(e, c, d)(E) dE,  

f2 p(e' c.d)'(x) = -  G(e, c, d)x(x, E) Ab(e, c, d)(E) dE,  

x E (0, 1), 

x e ( 0 , 1 ) .  

Because of (25) and (28) from the first formula we obtain again estimation (29) 
and from the second one we derive the .needed estimation for ly',c(x)-y'~a(x)l, 
namely 

l 

lY'~c(x) - y',d(x)l ~< e K E  Ici - d,I for a.e. x, E e (0, 1), 
i = 1  

Ve ~ (0, Co), Vc~  cr 

We summarize our findings in the next lemma. 

LEMMA 3. Let c~ C Rt+ be bounded, e o > 0 so small that (14) holds for  all c ~ cr 
and let Y~c = y(u, , )  E HA(O, 1) and Y,d = y(u,d) E Hol(0, 1) be the respective solu- 
tions to (2) for any c, d E cr Then y,~ - Y,a is the unique solution to (26) and there 
exists a positive constant K such that 
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l 

ly.~(x)-y.a(x)[ + [y,c(x) y.a(x)l~eK E [c, d,I 
i=1  

Ve ~ (0, Co), Vc, d E q r  

fo r  a.e. x E (0, 1) ,  

This Lemma 3 can be applied to ~ tO {0} C R / provided cr is bounded. So let us 
take c C cr and d = 0. Then we have u,a = u o and YEa = Yo. Using the auxiliary 
functions defined in (19)-(21) we introduce the following abbreviations: 

a~C = al(e ,  c, O), a~C = a2(e, c, O), . . . , g~zo)g~2(e,  c, O) , } 

Ab ~ = Ab(e,  c, 0) and Ag~ = Ag~(e,c ,  . 

The boundary value problem (26) reduces eventually to 

, ) - ~ [a~(x)P ' (x)  + a~C(x)p(x)] + [bl~(x)p'(x) + b~(x )p(x )]  = - A b " ( x ) ,  

x ~ ( 0 , 1 ) ,  with p ( 0 ) = 0 ,  p ( 1 ) = 0 ,  

(30) 

(31) 

and the variational equality (27) to 

{ [ a T o  . . . . .  ~ ' + a2 o]z + [b~ O + b;~olz}  dx = - Ab~Cz dx 

Vz e HI(0,  1 / . (32 / 

That means, in the special case considered here Lemma 3 reads as follows. 

L E M M A  4. For any bounded  set c~ C R 1 there exists a posi t ive constant  e o such 

that 

p ~ c = y ~ c - y o ~ H ~ o ( O ,  1) V e E ( 0 ,  e0), V c E ~ ,  

is the unique solution to (31) and there is another posit ive constant K such that 

Ip, c(x)l+lp:c(x)l<~eI,: fora.e.x~E(O, 1), Ve~E(O, eo) , VcECg. 

EC 8 r  For later purposes we have to calculate the limits of the functions a 1 . . . . .  gv2 as 
e tends to zero. These limits are given in the next lemma. 

L E M M A  5. I f  e---> +0,  then 

~c 0 ec  0 
a a ~ a  t ,  a 2 ~ a  s inLZ(O,  1 ) ,  

~ . . . .  o ~.__> o i n L l ( O ,  1) b l - - * b ~  b2--~b~ g~l--*'gv,, g~2 gvs 
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uniformly on any bounded set ~ C R l . 

Proof. Let e o > 0  be so small that (14) holds for any e E (0, e0) and that, 
~ C  E C  hence, p~c = Y~c - Yo and al , . . . ,  g~2 are defined for all e E (0, eo) and all c ~ qg. 

We prove only the first and the last statement; the other statements are proved 
analogously. 

By definition of a~ ~ , we have 

So' } laT~(x) - a ~  ~< la,(x, yo(X) + op,~(x), yo(X) + op'c(x)) - a~ d0 

fora .e ,  x E ( 0 , 1 ) ,  V e E ( 0 ,  eo) , VcE~. 

(33) 

In virtue of Lemma 4 we can take such a small e ~ (0, eo) that 

Ip.(x)l, lp'~(x)l<<-a f o r a . e . x ~ ( 0 , 1 ) ,  V e E ( 0 ,  eo) , V c ~ q g ,  

where 6 > 0 is taken out from assumption A2e. Applying this assumption to (33) 
we get 

laT~(x) - a~  ~< ~(Ip~(x)l + Ip;~(x)l) for a.e. x E (0, 1) ,  

Ve E (0, eo), V c E ~ ,  

from which, again because of Lemma 4, the first assertion follows. 
For proving the last assertion we take A > 0 so large that 

lu~(x)l~A f o r a . e . x ~ ( 0 , 1 ) ,  V e E ( 0 ,  e0), V c E ~ ,  

and 

luo(x)l + lyo(x)l + lyo(x)l, lu, I + ly0(x)l + lyo(x)l ~< 
fora .e ,  x E ( 0 , 1 ) ,  V e E ( 0 ,  eo) , V c E ~ ,  i = l , . . . , l .  

(Recall, by (12), we have Yo E L=(0, 1).) Then, taking e ~ (0, eo) so small that 

Ip~c(x)l, lp~(x)[<~6~ fora .e ,  x E ( 0 ,  l ) ,  V e E ( 0 ,  eo) Vc~E~', 

where now 6~ > 0 is the same constant as in assumption A3e, we obtain the 
estimate 

IIgv2~c _gO ill ~ Igv2(x)~C -g~s(x, u~(x), Yo(X), Yo(x))l dx 

+ [gv~(x, u~(x) ,  Yo(X), Yo(X)) o - g . (~ ) l  ,ix 

Io'fo' ! ! 

~< Ig~,(x, u~(x) ,  Yo(X) + Opec(x), Yo(X) + Opec(x)) 
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- g~,(x, ue~(x), yo(X), yo(X))l d0 dx 

l fxq+eci 
+ ~ ig~,(x ' ui, Yo(X) ' Yo(X) ) o 

i= l  i 

/"~4A (tP~c(X)I + IP'~(X)I) d~ + 2 h,~(x) dx, 
i=1 i 

where in the last step assumptions A3c and A3b were used. This estimate implies 
the last assertion of the lemma. �9 

Now we are going to investigate the functionals ff~. First we prove the continuity 
of 9-~(u~e , Ye~) with respect to c ERt+. 

L E M M A  6. For any bounded  set cr C R~+ there is a positive constant s o > 0 such 

that for  arbitrarily ~ e d  e ~ (0, So) the funct ions q~(c) = 9-v(u~r y ~ ) ,  v = - 

m o, . . . ,  n o , are continuous on c~. 
Proof.  Let  s o > 0 be taken so small that (14) holds for all c E cr Then,  for fixed 

s E (0, e0) , c, d ~ c~ and ~ = - m  0 . . . .  , n o we have the identity 

9-~(u, ,  Y e c ) -  J'~(U~d, Y,d) 

f 1 t 
0 [g~(" u , ,  y ~ ,  y , )  - g~(., U~c, Yea, Y'ed)] dx 

f2 + [gv(', U,c, Yed, Y'd) -- g~(', Ued, Y~d, Y;d)] dx. 

J ' 1 t t 

= o [g~l(s' c, d ) ( y ,  - Y~d) + g~2(S, C, d ) ( y , e  - Yea) + Age(e, c, d)] dx 

(34) 

from which, in virtue of Lemma 3 and (23)-(25) ,  we obtain the estimation 

l 

]ff-~(u,r Y~c) - ~r~(U,d, y . ) l  ~< eK  ~ [c i - dll 
i= l  

showing the wanted continuity of 4~ on ~. 

W e  i n t r o d u c e  s o m e  f u r t h e r  a b b r e v i a t i o n s .  F o r  a n y  w ~ { u  1 . . . .  , Ul, x 1 ,  . . . , Xl, 
c l , . . . , c l } E ~ w e p u t  

t 

ff~(w) = ~ ci{[b(xi, ui, Yo(Xi), y'o(Xi)) - b~ 
i=1 

+ [g,(xi ' ui, Yo(Xi), Yo(X,)) o . . .  (35) ' - g ~ ( x i ) ] } ,  v = - m  o, , n o ,  
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and for any w ~ { u a , . . . ,  u t, x ~ , . . . ,  x D e l , .  �9 �9 , C l )  ~ ~ ' d  and e E (0, Co) with 
e o > 0 sufficiently small 

~-~(e, w) = J-~l(e, w) + O'-~2(e, w) ,  v = - m o , . . . ,  no,  

~L (e, w) = [b(x, u~, yo(X), y;(x)) - b ~ lz~(x) d~ 
�9 i = 1  "x i  

- eci[b(xi ,  ui,  yo(Xi) ,  yo(Xi))  - b ~  

+ [g , (x ,  u i, Yo(X),  Y'o(X)) o - g , ( x ) l z ~ ( x )  d x  
i = 1  xi 

, 0 )} 
- ec,[g~(x, ,  u,, Yo(Xi) ,  Yo(X~)) - g~(x~)lz~(x  i , 

f: fo Ox t t ec 0 t ~'~z(e, w )  = (a~ ~ - a t ) z . p , c  d x  + (a z - a ~ ) z ~ p ~  d x  

ec 0 t 0 
+ (b~ - -  b t )zvpec d x  + (b2 ~ - b , ) z . p , ~  d x  

~c 0 t 0 
+ ( g v l  g ~ t ) P ~ c  d x  + ( g : C  2 - - g~,)P~c d x .  

Here,  since we have different types of arguments, one cannot mix ff~(e, w) up 
with ~'~(u, y). In both (35) and (36) z~ G Hi (0 ,  1) denotes the unique solution to 
the boundary value problem (9). Note ~-~(w) is defined for arbitrary w E ~,  but 
ff-~(e, w) only for w E ~a (as well as u~).  Their importance will be clear after the 
next two lemmas. 

L E M M A  7. F o r  any  w E ~d  it ho ld s  

~-~(u~c, Y~c) = ~-~(Uo, Yo) + e~-~(w) + f f~(e,  w)  , 

v = - m o , .  �9 �9  n o ,  V e  E (0 ,  Co) ,  

wi th  e o > 0 su f f ic ien t ly  smal l .  
P r o o f .  Let w E ~  a be given and e o > 0  so small that (!  4) is fulfilled. Then, 

because of (34) (with d = 0), for any v = - t o o , . . .  , n o and e E (0, %) we have 

fo 1 f~ ~-~("~, y~c) - ~-~(Uo, yo) = [g:~p;~ + g:~f,,~] ~ + ag7  ~ ,  

where g ~ ,  g:2 and Ag~ c are defined in (30). Since z~ ~ HA(0, 1) is a solution to 
the boundary value problem (9), it holds 

f: f: 0 ~ . k _ . 0  ~ t 0 t .k - 0 r 0 t -4- 0 
0 = -  {[atz, otz~ lp~  ~ + [asz  ~ b , z ~ ] p ~ }  d x  - t g , ,P , c  g~p~r d x  
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(cf. (10)). By Lemma 4, function P~c E Ho~(0, 1) is a solution to the boundary 
value problem (31), which implies 

fo ec  l ~c  l ~c  I Ec  

a2 P,c]z~ + ([al P,~ + "~ = [bl P,c + b 2 p,~]z~} dx + Ab z~ dx 

(cf. (32)). Thus, summing up the last three relations we find 

Furthermore, by definition of Z~g~f and Ab ~ (cf. (30), (21)), we have 

l o z~ + Ag; ~] dx = N [b(x, ui, yo(X), yo(X)) - b~ dx 
i=1 xi 

~ f  xi+eci 
+ [g~(x, u,, Yo(X), y'o(X)) o - g~(x)] dx 

i = 1  xi 
= ~- , (w)  + ~ ( ~ ,  w) .  

Thereby, the lemma is proved. �9 

L E M M A  8. Let  ~ C ~ be bounded and e o > 0 so small that (14) is valid for  any 
c E ~ .  Then for  any ~i > 0 there is a ~o = 8o( cr ~i) ~ (0, Co) such that 

~ - ~ l ~ - , ( ~ , w ) l ~  w e ( 0 , a 0 ) ,  V c e ~ ,  , , = - , n o  . . . .  , n o .  

Proof. Because of (36) the lemma is proved after showing the assertion is true 
for both $-vl and $-~2. Using the notations introduced in (13) for ~-~x(e, w), v = - 
m 0, . . . ,  n o , we can write 

~-~l(e, w) = b~i(x ) dx - e c~b;i(x,) 
i = 1  i 

l i(xi-I-~ c i +X 
i = l  ~ 

from which it follows 

g~,(x) dx - ec,g~,(x,) ] , 

l fx[i+eCi 
e-~[~-~(e, w)l <~ ~ ,  e -~ Ib~(x)  - b~(x3t dx 

i = 1  i 

1 ~Xi+6C i 
+ ~ e -1 Ig~i(x) - gv,(x,)l dx 

i = 1  xi 

valid for any e E (0, e0) and c ~ cr In virtue of boundedness of cr C •t+ we find a 
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constant k > 0  with k > - g  for each i =  1 . . . . .  l and each c =  { c a , . . .  ,Cl} E(~. 
That  means,  we get 

I ( xi+Sk 

1 1 fxi+Ek 
+ k ~  .,~, Ig.,(x) - g.,(x,)l dx /~k i=1 

valid for  any e ~ (0, Co) and c E c~. In this inequality the right hand side does not 
depend on the specified c E ~. Since, by definition of the set to C (0, 1), the points 
xi E w are Lebesgue points of b~ as well as g,~, ~, = - m  0 . . . .  , no, i = 1 , . . . ,  l, 
the statement is proved for ~~a. 

Consider now ~-~2(e, w), v = - m 0 , . . .  , n 0. Because of Lemma 4 there is a 
constant K > 0 such that 

e - a l 0 - ~ 2 ( e ,  w ) l  ~ g ( l l a 7  c - a~  + Ila~ c - a ~  + lib7 r - b ~  

+ ( l lb~ o + ~ . 0 - b ,  llPIIz~ll0 g(llg~a -g~ + I Ig~=-g~ , l lP  

Ve ~ (0, 8o), VcE ~'. 

Lemma  5 shows that the statement is also t rue  for ~-~2. Thereby the lemma is 
provedJ �9 

In the next section we have to deal with J~(w*), where w * E  ~. However ,  for 
example,  Lemma 7 holds only for w E ~a. This gap will be closed by the next 
lemma, which, roughly speaking, shows that w E ~d can. be chosen in such a way 
that ff~(w*) and ~~(w) differ as little as we wish. In other  words, our  last lemma 
in this section gives a certain continuity property of ff-~ = ~-~(w). 

L E M M A  9. For any given w* = { u l , . . . ,  Ul, x l ,  o . .  , x / ,  c l ,  ~ . . , c~ } ~ ~ and 

any given n u m b e r  rt > 0 there are measurable sets oJ i C (0, 1), i = 1 . . . .  , l, and a 

constant  6 > 0 such that meas(oJi O (x* - 6, x~ + 8 ) )  > 0 and that the estimations 

IJ-~(w*)-~-~(w)l<~7, v = - m 0 , . . . , n o ,  

hold  f o r  each w = {ua . . . .  , ul, xa , .  �9 �9  xt, g , .  �9 �9 , cz} E ~d with 

- * , - * + 6 )  i = 1 ,  , l  x~Eo~n(x* 8,x~ +8) ciER+ n(c7 8,g . . . . .  

Proof .  L e t  w *  = ( u  1 . . . . .  Ul, X~,. . . ,x~, c I . . . . .  c~} ~ be fixed and let 
w ~  a be arbitrary, but  of the form w = { u a , . . .  ,Ul, X x , . . .  ,Xl, C l , . . .  , c  l} E 
~a. For  the sake of brevity we put 

d~i(x ) = b ~ i ( x  ) + g ~ i ( x ) ,  x E ( 0 , 1 ) ,  v = - m  0 . . . . .  no ,  i = l , . . . , l ,  
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where b~i and g~i are given in (13). Then we have 

l l 

er (w*) - er (w) = ~ (c? - c,)d,,(xT) + ~ c,(d,,(x*) - d,,(xi)), 
i = 1  i = 1  

Vxi ~ to , Vci E (~ + , 

and hence 

no  l 

Iff~(w*)- er~(w)l<~ E E Ic~ - c ,  lld~,(x*)l 
v = - m o  i f f i l  

no  l 

+ Y~ ~, (c* + Ic , -c* l ) ld~ , (x?) -d~ , (x , ) l ,  
v = - m  0 iffil 

V X i  ~ tO , VCi  ~ N + �9 

Now let ~/> 0 be given. By definition of to each x~ E to is a Lebesgue point of d~. 
Therefore,  we may choose a constant M1 > 0 such that 

M 1 

Id~,(xT)l < l(mo + no + 1 ) '  v = - m 0 , . . . ,  n o , i = 1 , . . . ,  l ,  

and another constant M 2 > 0 with 

, 1,1 
ci + ~ - ~ x < M 2 ,  i = l , . . . , l .  

We choose also a positive 80 <,1/2M1. Then, for any c = { C l , . . . ,  ct} E R t with 
Ic* -c~l  <80 ,  i = 1, . . ,  l, we get the estimations 

l 

[ff'~(w*) - ff~(w)[ < ~ + M 2 Z fi(xi) , v = - m o  . . . .  , n o ,  (37) 
i = 1  

where xi E to is  still arbitrary and where we have set 

no 

f~(x)-- ~ Id~,(x~ ) -  d~,(x)l, x~to, i= 1, . . . , l .  
p ~ - - m  0 

Obviously, for any i = 1 , . . . ,  l it holds f / E  L 1(0, 1), f~(x*)= 0 and the given 
* - -  * 

x i ~ t o  is a Lebesgue point for fi. Therefore, fi is at x - x i  approximately 
continuous (see [11] Kap. XI, w [15] Sect. 4.4.), which means that there are 
measurable subsets toi C (0, 1) such that the Lebesgue density of to~ at x* equals 
one and that f~ is continuous at x* relative to toy In other words, for any 8 > 0 the 
sets to~ tq (x* - 8, x* + 8 ) have positive measures and for 7/> 0 given above there 

are such 8~ > 0 that 
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77 
O~fi(x)<2M21 , xEto iN(x*-6 ,  x * + 6 ) ,  i = l , . . . , l .  

Taking 6 = m i n { 6 o , . . . ,  St} from (37) the desired inequalities follow. 

5. Proof of Theorem 1 

As before {Uo, Y0} ELm(0 ,  1 ) •  Ho(O, 1) denotes an optimal solution to our 
control problem (P). If there are no integral constraints of type (3) at all, then 
Theorem 1 reduces to the necessary optimality condition 

r t b(x, u, Yo(X), Yo(X))Zo(X ) + go(X, u, Yo(X), yo(X)) ~ ] 
b(x, Uo(X), Yo(X), y'o(x))Zo(X ) + go(X, Uo(X ), Yo(X), Yo(X)) t (38) 

V u E Q ,  a.e. xE(O, 1), J 

where z 0 E Hol(0, 1) is the unique solution to (9) (for v = 0). This optimality 
condition can be easily verified. Indeed, since {uo, Yo} E L~(0 ,  1) x H I ( 0  , 1) is a 
solution to (P) and because of  Lemma 7, we have 

0 <~ e-X(fo(U,c, Y,c) - f0(Uo, Yo)) = i0(w)  + E - l i f 0 (  E '  W), 

for any w E ~d and for all e ~ (0, Co), e 0 = eo(W ) > 0 sufficiently small. From this, 
by Lemma 8, we get 0 ~< fo(W ) Vw ~ Zd. Taking w E Zd with l = 1 and c 1 = 1, this 
condition implies (38). (See also [10].) 

Thus, in the following it is assumed that in (3) there is at least one integral 
condition to be satisfied. To prove now under this assumption Theorem 1 we 
introduce the notations 

Y = {Y-too, '" ,  Y-I, Yo, Y 1 , ' " ,  ]1, o} E R m~176 , 

Y' = {YI . . . .  ' Yno) E R "~ , (39) 

i ( W )  -~ ( f _ m o ( W ) , . . .  , f n o ( W ) }  , W ~ ~ ' ,  

and define the sets 

ff{o=(y~Rm~176 y_r% ~O, . . .  ,Yo~O, YI=O, . . . ,Y ,o=O} , (40) 

= {Y E Rm0+ne+l: Y = f(W),  W E ~Z}, (41) 

Y(' = {Y' E Rn~ 3 Y _ m o , . . . ,  Yo E R such that {Y_mo . . . .  , Yo, Y'} E ~ } .  

(42) 

Here  f . ( w ) ,  v = - m  o . . . .  , no, is given in (35); in (39) and (42) it is assumed 
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no ~ 1. Obviously, Y(o is a convex cone with vertex at the origin. The same is true 
for the two other sets. 

L E M M A  10. Y[ C R m~176 and ~ '  C R n~ are nonempty convex cones. 
Proof. It suffices to prove the statement for the set ~ .  If h > 0 and w = 
( u l , . . . , u  l ,x  1 , . . . , x  l,c 1 , . . . , c t } ~ ,  then with w x = ( u ~  . . . .  , ul, x l , . . . ,  
x~, h c ~ , . . . ,  Act} ~ ~ it holds 3-(wx) = hO-(w) showing the cone property of ~ .  If 
wp` "~- I. "fup'I, " " �9 , U p̀ ltz, X ~ , .  �9 �9 , X l t , p `  cl ,P`. . . ,  c~ } E ~ ,  /~ = 1, 2, then with w = 

1 2 1 2 1 2 ~ 2 { u l , . . . , u l  2 , x I , . .  . ,xl2, c l , . . .  ,c12 } E ~ w e h a v e  O-(w) = ~(w 1) + ~-(w ), from 
which the convexity of the cone Y~ follows. �9 

The evidence of introducing the cones ~go and Y/is given by the next lemma. This 
lemma will be essential in the subsequent discussion. 

L E M M A  11. / f  the cones ~0 C ~m0+n0+l and Y~" C ~ m0+n0+l defined in (40) and 
(41), respectively, can be separated, then Theorem 1 holds. 

Proof. By assumption, there exists a vector A= {h_m0, . . . , hn0  } 
~m0+n0+l\(0} such that 

(A,Y)~<O VYEY/o and O~<(A,Y) V Y ~ Y [ .  

The first condition yields A-m0 ~> 0 , . . . ,  h 0 I> 0 and the second one reads as 

n0 

  er(w) (43) 

Since (43) implies the minimum condition (8), the lemma is already proved. �9 

The further discussion is split up into two cases concerning the integral 
constraints (3)�9 Namely: 

(a) There is at least one equality condition. 
(b) There is no equality condition at all. 

In case (a), which means n o ~ 1, we distinguish for the cone ~f' C R n~ , defined in 
(42), the two subcases (al)  Y( '~  R n~ and (a2) Y{'= R n~ 

Let us begin by supposing (a) and (al)  are fulfilled�9 By ([3] Satz 2.25) the 
convex cone 5(' can be separated from the origin. That means, there is a vector 
A t =  ( X l , .  no � 9  A,o } ~ R \{0} with 0 ~< (A', Y') VY' E 5('. Putting A = 
{0 . . . .  ,0 ,  A'} E Rm~176 we again obtain (43), which also shows the validity 
of Theorem 1 in this case. 

Now we consider the most difficult case characterized by (a) and (a2). If we 
suppose that in this case Theorem 1 is not valid, then, by Lemma 11, the two 
cones Yf0, Y{ C R m~176 cannot be separated. We show this implies a contradic- 
tion to the optimality of {Uo, Y0} ~ L ~ ( 0 ,  1 ) x  H i (0 ,  1). More precisely, we 
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construct an admissible pair {u. ,  y .}  ~ L~,(O, 1) x H~(O, 1) to our control prob- 
lem (P) such that ~ro(u., y . )  < ffo(Uo, Yo). This rather technical part of the proof 
will be done within several steps. 

Step 1: Since ~o C ~ m~176 and ~ C R =~176 cannot be separated, by ([12] Satz 
9.1), it holds 

rel int 5~ o f3 rel int ~ # O . 

Thus, there exists a vector 

y*  y *  �9 
= {  -too' Y * o } E ~  with Y* < 0 ,  Yo < 0  

Y~ . . . . .  Y* = 0 
n o 

Because of ~ '  = R "~ we can choose an element 

yO yO 
= { _ n o , . . . ,  g~ EYC 

and n o further elements 

= {  -m o, . - , Y , o } E Y {  

0 . . ~ _ _ y O  = 
with Y I = ' "  "o rl  

with Y~ = K2~vp  " , b ' , / z  = 1 , . . .  , n o . 

Here K 1 < 0 and r 2 > 0 are two arbitrarily choosen constants and By, denotes the 
Kronecker symbol. Convexity of 5g yields 

( 1 - a ) Y * + ; t Y " e ~  W e [ 0 , 1 ] ,  j z = 0 , . . . , n o .  

We take A ~ [0, 1] so small that 

( 1 - A ) Y * + A Y ~ < 0 ,  for all / x = 0 , . . . , n o ,  v = - m  o . . . .  ,0  (44) 

and introduce the constants K 3, K 4 < 0 and a, /3 > 0 by setting 

and 

K 3 = m i n { ( 1 - a ) Y *  +AYe: tx = 0 , . . . , n o ,  v = - m  o . . . .  ,0} 
r 4 = m a x { ( 1 - a ) Y *  + AYe: p. = 0 , . . . , n o ,  v = - m o , . . .  , O } j  

. f 2K 1 2 } {6K__j 2 }  
ot = mln/.9-r2K3 , 333" , /3 = max KzK4 , 

respectively�9 

Step 2: By (41), there are elements 

= . . . .  , e ; )  p , = 0 , . . .  , n  o 

(45) 

(46) 
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such that 

~ ( f f ' ) = ( 1 - A ) Y * + A Y ' ,  I . t = O , . . . , n  o . (47) 

Taking a constant ~/with 

1 AK2 } 
0 < ~ < ~ m i n [ 1  + ~ ( n o  + 2)]no, -2Axl , - -2K 4 , (48) 

by Lemma 9, for each It = 0 , . . .  , n  0 we find measurable sets ~o~'C(0, 1), 
i = 1 , . . . ,  l , ,  and a positive number 8, such that meas(~o'{ n (~'{ - 6, ,  ~'{ + 6,)) > 
0 and 

l e r ( ~ ) -  e~(w~)l < ~ ,  ~ = - m 0 , . . .  , no ,  (49) 

holds for any 

w '~=~uL ,u;,xL ,x;;c~ . . . .  , ~ ; ) ~ : z ~  (50) 

with 

i =  1 , . . .  , I , .  

Again referring to Lemma 9 for each/~ = 0 . . . . .  n o we can choose such elements 
w"  ~ Za of the form (50) and satisfying (49) that " " x i # x j  provided i # j  or /z  # v. 

~,o+1 the This means for an arbitrary parametric vector ~=  {Ko, . - . ,  K-o} E . . +  
vector 

0 n o n o 0 0 n o n o , 
W ( C  ) = ( U l 0 ,  . . . , U / 0 ,  �9 �9 �9 , U 1 , . . . ,  Ulno, X l , " " " ,  X / 0 , . . . ,  X 1 , .  . . . .  Xlno 

C O C O , . . . ,  CoC lO, . . . , CnoCl 0 . . . .  , CnoC lnn O} ( 5 1 )  

belongs to ~d" Below w(C) will be considered in detail. For later purpose we note 
that, by (47) and (48), the inequalities (49) imply the following estimates for 
~r.(w'): 
If tt = 0, then 

~K 3 < ~-.(w ~ < { K  4, v = - m  o . . . . .  0 ,  "~ 

ka~l < ~v(w~ < � 89  ~ = 1 , . . . ,  ,o  ,J 
(52) 

md if/~ = 1 . . . . .  no, then 
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3K 3 < ~ ( w  ~') <�89 v = - too  . . . .  , 0 ,  

- ~ / <  ~-,(w ") < 77, v = 1 , . . . ,  n o, v ~ / z ,  (53) 

Step 3: For sake of brevity we put 

a~=~r~(w~ v = 0 , . . . , n  o , b~=~~(w~) ,  v = l  . . . . .  n o , (54) 

and introduce the regular (n o + 1) x (n o + 1) matrix (io~ 
92= al bl . (55) 

-o 0 b.o 

We choose two numbers r > 0 and d < 0 such that 

r r 
- -  < - d  < + 1 + . ( 5 6 )  
O~ Ot �9 

Let 

1 
~O=_dy with y = { y o ,  y~ . . . .  'Y-o} '  Y o = - a ~ ,  

av 
Y~ ="2"V- f o r v = l , . . .  ,n  o . 

uot ,  v 

Then, for the closed ball /~(~o,  r) centered at ~.o and with radius r the inclusion 
B(~ ~ r) Cint R~ ~ holds. Indeed, by (52) and (53), we have 

a ~ < y , ,  v = l  . . . .  , n o ,  and I ly l l~V~o+l .  (57) 

Denoting by ~o and ~ the vth component  of g.o, ~ ~ R,o+l,  respectively, for 
arbitrary ~ ~ /~(~o ,  r) we have 1~ - ~~ I ~< II ~" - ~'~ ~ r ,  ~ = o , . . . ,  no  and, conse- 
quently, 

~ ~>~ O_r=_dy~_r>~_da_r>O, v = 0 , . . . , n  o. (58) 

We take now an e > 0 so small that 

n0 

/ t~0 

~ , - - - - - - m o , . . .  , - - 1 ,  

V~ ~ B(r ~ r), 

(59) 
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r -I~-.(E, W(C)) < 2~1192_111 v~" e B ( ~ ' ~  

v = 0 , . . . ,  no, (60) 

and that condition (14) with c = c ( r  {r c~ . . . .  , r176 r ~ . . . ,  r ~ 
is satisfied for any r ~/~(r176 Conditions (59) and (60) are justified by 
(52), (53), (58) and Lemma 8. The latter has the consequence that by way of 
w(r as given in (51) a McShane-variation u s of our optimal control u o is defined 
for arbitrary C e /~( r176  (see (15)). By yr162 1) we denote the 
related state. Because of Lemma 7, (35) and (51) we come to the relations 

9-~(u~, yr = ~'~(Uo, Yo) + e~,(w(r + ~r~(e, w(r 
nO 

= 9-,,(Uo, Yo) + e ~] ~'~.Y,,(w ~') + 9"-,,(e, w(~')), 
p.=O 

r ~/~(r176 r) ,  v = , m o , . . . , n o .  (61) 

0 n0+l Step 4: After having fixed e , r , - d > 0 ,  ~ ER§ and w(~)E~a ,  we consider 
the nonlinear equation system 

~o~-o(W ~ + e-1~-o(8, w(~)) = d ,  
.o 
~ ~.~r (w.) + ~-1~-(~, w(~)) = o ,  

I.~=0 
u = l , . . . , n  o } (62) 

for which we are going to verify that it has a solution ~* e/~(~0, r). To this end, 
besides a~ and b~ introduced in (54), we define 

no 

b~(~)= ~ ~,~'v(w~), ~E/~(f f~  v = l , . . . , n o ,  
p,#v 

b~(e, ~) = e-l~r~(e, w(~)),  ~ ~ B(~ ~ r), v = 0 . . . .  , no, 

b(~') = (0, bx(~) . . . . .  b,o(~)}, ~ ~/~(~o, r ) ,  

b(e, ~') = (bo(e, ~), bx(e, ~ ) , . . . ,  b,o(e, ~)}, ~" ~/~(~o, r ) ,  

and b = {d, 0 , . . . ,  0}. Then, using matrix 92 defined in (55) system (62) reads as 

92~ + ~(~) + fi(e, ~) = b,  ~ e B(~ ~ r),  

that means, (62) is equivalent to the fixed point equation 

f ( r  r e ~ ( ~ ~  

where the vector valued function f = ~(~) is given by 
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f = 9~- 'h  - ~ t - ' ~ ( ~ )  - 9~ - '~ (e ,  r  

Because of 

b,(sr) 
~ - i  b = ~o and 9~-1b(( )  = 0, bl 

we get 

" v = l  b~ ] 
r~ 0 

+ ii~-'ll(Eo<(,, <)) ''~ , 

Using (53) and (60) we see that 

and 

~/~(r176 0. 

, . - - ,  ~ , o  J 

V~" ~ W(~" o, r ) .  

b~.(;) _ 
b~ 

1 no 3 -`2` ~, ~ r  ~) ~< 1Ir ~ E ~ ( w  ) 
~- , (w)  _ ~=l ,tw ) 

/ ,t#v /~#v 

n o ,  v = l ~ . . .  ~/~ 0 ,  

-2o7-2 
2 

r 

4(n o + 1) l l ~ - ' i i  ~ '  
/ / = 0  r . . . ~ n  0 

hold for any ( ~/~(~0, r). Therefore, we obtain 

ilf(;)-c~ V;~D(~~ 

By (56) and (57), we have 

Ilcli~ lit-c~ + ilc~ ~,[1 +~(,o + 2)] v; ~ D(;~ 

Taking eventually into account (48), we find f maps the dosed bali /~(~o, r )C 
i n t  ~0+1 into itself. Obviously, in virtue of Lemma 7 and formula (61), f is 
continuous on/~(~0, r). That is, by Brouwer's fixed point theorem (see, e.g. [14] 
w f has a fixed point (* ~ J0(~ "~ r), which in accordance with our construction 
is also a solution to (62). 

Step 5: In the previous step we have seen that the system (62) has a solution 
~ * =  { ~ ,  " " ,  ~*o) ~ in t  .,+~ "~ . Thus, via (51) we are given a w, = w ( ~ * ) ~ Z  a 

by means of which a McShane-variation u ,  = ur  E Uaa of u 0 is defined (see (15), 
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e fixed); let y ,  = y ( u . ) E  HA(0, 1) be the corresponding solution of state equation 
(2). Then from (61), (62) we get 

no 

fr~(u., y . )  fr~(u0, Y0) + e ~ * =   fr,(w ) + w , ) ,  
/z=0 

v = - m o , . . . ,  - 1 ,  

no 

fro(U*, Y*) = fro(Uo, Yo) + e ~ r  '~) + ed , 
~=1 

fr , (u . ,  y . )  = fr~(u0, Yo), v = 1 , . . . , n 0 ,  

and from this, by (53) and (59), 

fr,,(u., y . )  < fr,,(Uo, Yo), v = " r n 0 , . . .  , - 1 ,  

fro(U., Y . )  < fro(Uo, Yo) + c a ,  

fr, ,(u.,  y . )  = fr,,(Uo, Yo) ,  v = 1 , . . . ,  n o , 

(63) 

showing that the pair (u . ,  y .}  E Lm(0, 1 ) x  HA(0 , 1) satisfies the integral con- 
straints (3). Since, furthermore,  because of ed < 0, inequality (63) is a contradic- 
tion to the optimality of {Uo, Yo}, thereby Theorem (1) is proved in case of (a) 
and (a2) are fulfilled. 

Case (b) remains to be considered, that means the case that in (3) equality 
conditions do not occur. Since Lemma 11 is still valid (with n o = 0), we may in 
principle proceed as above. But, instead of having no + 1 elements w ~ E ~a (cf. 
(50)) we have now only one element w ~ = { U l , . . . ,  ul, x l , . . . ,  xl, c 1 , . . . ,  ct) E 
~d satisfying 

Is 5 < frv(W O) < / (6 ,  /" = - - m 0 , . . . ,  0 ,  

where 1s 1s <0 .  We define w( ~ ) = (u l ,  . . . ,  ul, Xl, . . .  , xl , ~cl, . . . ,  ~Cl} ~ ~'d , 

~ R+,  (cf. (51)). Then we choose two numbers r > 0 ,  d < 0  such that d < 
fro(W~ define ~0= d/fro(W o) and take an e > 0 so small that 

fro(e, w(~')) < - e~ f rv (w  ~ V~" E [~o _ r, ~.o + r] C (0, ~ ) ,  

v = - - m o , . . .  , - - 1 ,  

< rlfro(W~ lifo _ r, fro + r] ; 

(see Lemma 8, cf. (59), (60)). Arguing analogously as for (62) we can verify that 
the nonlinear equation 

~'fro(W ~ + e'qfro(e, w(~')) = d ,  ~" ~ [~  r~ - r, ~.o + r ] ,  
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has a solution g'* >0 .  We define w ,  = w ( ( * ) ,  u ,  E Uad, y ,  ~ H I ( O ,  1) as before 
and come eventually to 

fr~(u,, y , ) =  fr~(u 0, Y0) + e~*fr~(w~ + fro(e, w , )  , v = - m o ,  . . . , - 1 ,  

fro(U,, Y , )  = fro(Uo, Yo) + c a ,  

which again implies a contradiction to the optimality of {u0, Y0}. Thus, Theorem 
1 is proved also in the last one (b). �9 
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